Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Chemosphere ; 335: 139093, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-2328359

ABSTRACT

Chloroquine phosphate (CQ) is an antiviral drug for Coronavirus Disease 2019 and an old drug for treatment of malaria, which has been detected in natural waters. Despite its prevalence, the environmental fate of CQ remains unclear. In this study, the direct photodegradation of CQ under simulated sunlight was investigated. The effect of various parameters such as pH, initial concentration and environmental matrix were examined. The photodegradation quantum yield of CQ (4.5 × 10-5-0.025) increased with the increasing pH value in the range of 6.0-10.0. The electron spin resonance (ESR) spectrometry and quenching experiments verified that the direct photodegradation of CQ was primarily associated with excited triplet states of CQ (3CQ*). The common ions had negligible effect and humic substances exhibited a negative effect on CQ photodegradation. The photoproducts were identified using high-resolution mass spectrometry and the photodegradation pathway of CQ was proposed. The direct photodegradation of CQ involved the cleavage of the C-Cl bond and substitution of the hydroxyl group, followed by further oxidation to yield carboxylic products. The photodegradation processes were further confirmed by the density functional theory (DFT) computation for the energy barrier of CQ dichlorination. The findings contribute to the assessment of the ecological risk associated with the overuse of Coronavirus drugs during global public health emergencies.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Sunlight , Photolysis , COVID-19 Drug Treatment , Water Pollutants, Chemical/analysis , Kinetics
2.
Environ Sci Technol ; 57(21): 7913-7923, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2315445

ABSTRACT

Antiviral transformation products (TPs) generated during wastewater treatment are an environmental concern, as their discharge, in considerable amounts, into natural waters during a pandemic can pose possible risks to the aquatic environment. Identification of the hazardous TPs generated from antivirals during wastewater treatment is important. Herein, chloroquine phosphate (CQP), which was widely used during the coronavirus disease-19 (COVID-19) pandemic, was selected for research. We investigated the TPs generated from CQP during water chlorination. Zebrafish (Danio rerio) embryos were used to assess the developmental toxicity of CQP after water chlorination, and hazardous TPs were estimated using effect-directed analysis (EDA). Principal component analysis revealed that the developmental toxicity induced by chlorinated samples could be relevant to the formation of some halogenated TPs. Fractionation of the hazardous chlorinated sample, along with the bioassay and chemical analysis, identified halogenated TP387 as the main hazardous TP contributing to the developmental toxicity induced by chlorinated samples. TP387 could also be formed in real wastewater during chlorination in environmentally relevant conditions. This study provides a scientific basis for the further assessment of environmental risks of CQP after water chlorination and describes a method for identifying unknown hazardous TPs generated from pharmaceuticals during wastewater treatment.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Disinfection/methods , Chlorine/analysis , Zebrafish , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , COVID-19 Drug Treatment , Water
3.
Nanomaterials (Basel) ; 13(9)2023 Apr 22.
Article in English | MEDLINE | ID: covidwho-2314606

ABSTRACT

This study describes the use of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO) as an electrode modifier for the determination of chloroquine phosphate (CQP). The synthetized rGO-CuNPs composite was morphologically characterized using scanning electron microscopy and electrochemically characterized using cyclic voltammetry. The parameters were optimized and the developed electrochemical sensor was applied in the determination of CQP using square-wave voltammetry (SWV). The analytical range for the determination of CQP was 0.5 to 110 µmol L-1 (one of the highest linear ranges for CQP considering electrochemical sensors), with limits of detection and quantification of 0.23 and 0.78 µmol L-1, respectively. Finally, the glassy carbon (GC) electrode modified with rGO-CuNPs was used for quantification of CQP in tap water; a study was carried out with interferents using SWV and obtained great results. The use of rGO-CuNP material as an electrode modifier was thus shown to be a good alternative for the development of low-cost devices for CQP analysis.

4.
Microchemical Journal ; 190:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2298766

ABSTRACT

[Display omitted] • Tb-MOF as a potential sensing material for chloroquine phosphate recovered for multiple cycles. • The quenching mechanisms between Tb-MOF and chloroquine phosphate from many aspects investigated. • The sensor used for the visual detection of chloroquine phosphate in serum. A novel three-dimensional (3D) anionic anhydrous metal − organic framework (MOF), {[NH 2 (CH 3) 2 ]·[Tb(pdca) 2 ]} n (Tb-MOF ;H 2 pdca = 2,5-pyridinedicarboxylic acid) has been triumphantly fabricated and structurally characterized. The obtained Tb-MOF displays good stability in some common solvent systems and high temperature environments. The luminescence properties of Tb-MOF are investigated by fluorescence spectra, and the results exhibit superb characteristic emission of Tb3+ ions, which lay a foundation for exploring the fluorescence sensing application of the material. More importantly, based on competitive absorption and dynamic quenching, Tb-MOF can be applied to detect chloroquine phosphate (CQ) used for the treatment of COVID-19 and malaria, showing high sensitivity and fast response speed in the sensing process. Notably, the specific quenching effect between Tb-MOF and CQ in the serum system without interference from other components, demonstrating the practical application potential of Tb-MOF. [ FROM AUTHOR] Copyright of Microchemical Journal is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

5.
Molecules ; 28(8)2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2304352

ABSTRACT

Chloroquine phosphate (CQP) is effective in treating coronavirus disease 2019 (COVID-19); thus, its usage is rapidly increasing, which may pose a potential hazard to the environment and living organisms. However, there are limited findings on the removal of CQP in water. Herein, iron and magnesium co-modified rape straw biochar (Fe/Mg-RSB) was prepared to remove CQP from the aqueous solution. The results showed that Fe and Mg co-modification enhanced the adsorption efficiency of rape straw biochar (RSB) for CQP with the maximum adsorption capacity of 42.93 mg/g (at 308 K), which was about two times higher than that of RSB. The adsorption kinetics and isotherms analysis, as well as the physicochemical characterization analysis, demonstrated that the adsorption of CQP onto Fe/Mg-RSB was caused by the synergistic effect of pore filling, π-π interaction, hydrogen bonding, surface complexation, and electrostatic interaction. In addition, although solution pH and ionic strength affected the adsorption performance of CQP, Fe/Mg-RSB still had a high adsorption capability for CQP. Column adsorption experiments revealed that the Yoon-Nelson model better described the dynamic adsorption behavior of Fe/Mg-RSB. Furthermore, Fe/Mg-RSB had the potential for repeated use. Therefore, Fe and Mg co-modified biochar could be used for the remediation of CQP from contaminated water.


Subject(s)
COVID-19 , Environmental Pollutants , Water Pollutants, Chemical , Humans , Iron/chemistry , Magnesium , Environmental Pollutants/analysis , Water , COVID-19 Drug Treatment , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Kinetics
6.
J Clean Prod ; 383: 135416, 2023 Jan 10.
Article in English | MEDLINE | ID: covidwho-2131375

ABSTRACT

Under the new crown pneumonia (COVID-19) epidemic, the intensive use of therapeutic drugs has caused certain hidden danger to the safety of the water environment. Therefore, the core-shell microporous zinc silicate (SiO2@ZSO) was successfully prepared and used for the adsorption of chloroquine phosphate (CQ), tetracycline (TC) and ciprofloxacin (CIP) for eliminating the threat of COVID-19. The adsorption efficiencies of 20 mg L-1 of CQ, TC and CIP by SiO2@ZSO were all up to 60% after 5 min. The adsorption capacity of SiO2@ZSO for CQ, TC and CIP can reach 49.01 mg g-1, 56.06 mg g-1 and 104.77 mg g-1, respectively. The adsorption process is primarily physical adsorption, which is heterogeneous, spontaneous and preferential. Moreover, the effects of temperature, pH, salinity, and reusability on the adsorption of CQ, TC, and CIP on SiO2@ZSO were investigated. The adsorption mechanism mainly involves electrostatic attraction, partitioning and hydrogen bonding, which is insightful through the changes of the elements and functional groups before and after adsorption. This work provides a solution to the problems faced by the treatment of pharmaceuticals wastewater under the COVID-19 epidemic.

7.
Separation and Purification Technology ; 305:122517, 2023.
Article in English | ScienceDirect | ID: covidwho-2096024

ABSTRACT

Chloroquine phosphate (CQP) has been suggested as an important and effective clinical reliever medication for the 2019 coronavirus (COVID-19). Nevertheless, its excessive use will inevitably cause irreparable damage to the entire ecosystem, thereby posing a considerable environmental safety concern. Hence, the development of highly-efficient methods of removing CQP from water pollution sources, e.g., effluents from hospitals and pharmaceutical factories is significant. This study reported the fabrication of novel CN bond linked conjugated microporous polymers (CMPs) (BPT–DMB–CMP) with multiple nitrogen-rich anchoring sites for the quick and efficient removal of CQP from aqueous solutions. The irreversible covalent CN bond linked in the internal framework of BPT–DMB–CMP endowed it with good chemical stability and excellent adsorbent regeneration. With its predesigned functional groups (i.e., rich NH bonds, triazine rings, and benzene rings) and large area surface (1,019.89 m2·g−1), BPT–DMB–CMP demonstrated rapid adsorption kinetics (25 min) and an extraordinary adsorption capacity (334.70 mg·g−1) for CQP, which is relatively higher than that of other adsorbents. The adsorption behavior of CQP on BPT–DMB–CMP corresponded with Liu model and mixed-order model. Based on the density functional theory (DFT) calculations, X-ray photoelectron spectroscopy (XPS), and adsorption comparisons test, the halogen bonding, and hydrogen bonding cooperates with π − π, C  H···π interactions and size-matching effect in the CQP adsorption system on BPT–DMB–CMP. The excellent practicability for the removal of CQP from real wastewater samples verified the prospect of practical application of BPT–DMB–CMP. BPT–DMB–CMP exhibited the application potentials for the adsorption of other antiviral drugs. This work opens up an efficient, simple, and high adsorption capacity way for removal CQP.

8.
Coronavirus Drug Discovery: Volume 1: SARS-CoV-2 (COVID-19) Prevention, Diagnosis, and Treatment ; : 153-168, 2022.
Article in English | Scopus | ID: covidwho-2048775

ABSTRACT

Chloroquine (CQ) and its analog hydroxychloroquine (HCQ) are popular antimalarial drugs that also exhibit wide range of activities against other diseases such as cancer, diabetes, HIV, and microbial infections, among others. They are also reported to possess antioxidant properties. The popularity of these drugs skyrocketed with the emergence of coronavirus disease 2019 (COVID-19) that has caused the deaths of over 600,000,000 people worldwide just within 7 months. Due to the urgency of the time in discovering or repurposing new drugs that will be active against SARS-CoV-2, the causative agent of COVID-19, some initial in vitro studies found prospects in CQ and HCQ against SARS-CoV-2. HCQ instantly became a drug of choice over CQ for the treatment of COVID-19 patients because it is readily absorbed and less toxic. However, clinical studies found no positive indices to support the continued use of HCQ. This chapter looks into this by consulting current literatures in order to unravel the myth surrounding the approval and disapproval of the use of HCQ. © 2022 Elsevier Inc. All rights reserved.

9.
J Environ Chem Eng ; 10(6): 108641, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2041923

ABSTRACT

Chloroquine Phosphate (CP) is an antiviral drug used for treatment of COVID-19. It is released into wastewater and eventually contaminates natural water. This study reports an effective homogeneous catalysis way for CP degradation by the 2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) enhanced persulfate (PDS) activation under UVB-LEDs irradiation at 305 nm. TEMPO at a low concentration (0.1 µM) enhanced CP degradation in UV305/PDS process in deionized water at different pHs, in different anions and different molecular weight dissolved organic matter solutions and in real surface water. The enhancement was verified to be attributed to the electron shuttle role of TEMPO, which promoted the yield of SO4 •- by enhancing electron donating capacity of the reacting system. The degradation products of CP and their acute toxicities suggested that UV305/PDS/TEMPO process has better performance on CP detoxification than UV305/PDS process. This study provides a new way to tackle the challenge of pharmaceutical pollutions in homogeneous photocatalysis process for natural water and sewage restoration.

10.
Huan Jing Ke Xue ; 43(9): 4597-4607, 2022 Sep 08.
Article in Chinese | MEDLINE | ID: covidwho-2025656

ABSTRACT

The degradation of chloroquine phosphate (CQP), an anti-COVID-19 drug, was investigated in a UV-activated persulfate system (UV/PS). The second-order rate constants of CQP with hydroxyl radicals (HO·) and sulfate radicals (SO4-·) were determined using a competition kinetics experiment, and the effects of persulfate concentration, pH, and inorganic anions on the degradation of CQP were also systematically studied. Furthermore, a kinetic model was established to predict the concentration of CQP and major free radicals to explore its mechanism of influence. The results showed that the degradation efficiency of CQP could reach 91.3% after 10 min under UV/PS, which was significantly higher than that under UV, sunlight, or PS alone. At pH=6.9, the second-order rate reaction constants of CQP with HO· and SO4-· were 8.9×109 L·(mol·s)-1and 1.4×1010 L·(mol·s)-1, respectively, and the main active species was SO4-·. The degradation rate of CQP increased with increasing concentrations of PS and decreased with the addition of HCO3- and Cl-. The removal efficiency of CQP was inhibited under stronger alkaline conditions. N-de-ethylation, cleavage of the C-N bond, and hydrogen abstraction were proposed as the principal pathways of CQP degradation based on LC-MS analysis. The mineralization rate of CQP could be improved by increasing PS concentration and pH values. This study could be helpful for the treatment of anti-COVID-19 pharmaceutical wastewater.


Subject(s)
Water Pollutants, Chemical , Chloroquine/analogs & derivatives , Hydroxyl Radical/analysis , Hydroxyl Radical/chemistry , Oxidation-Reduction , Wastewater/analysis , Water Pollutants, Chemical/analysis
11.
Pakistan Journal of Zoology ; 54(4):1893-1898, 2022.
Article in English | Scopus | ID: covidwho-1847888

ABSTRACT

A novel coronavirus commonly known as COVID-19 has resulted in an ongoing outbreak of viral pneumonia. This pandemic started from Wuhan City, China and has spread throughout most parts of the world (210 countries). COVID-19 is a large sized, enveloped, positive stranded RNA virus. Out of the four known genera, alpha and beta corona viruses are the most commonly recognized viruses infecting human beings. COVID-19 is a new virus that is highly contagious. It spreads through infected persons in its prodromal stage which suggest its transmission is not likely through air. COVID-19 can affect people of all age groups and mostly results in the death of people with weak immune systems. Its most common reported symptoms are fever, fatigue, dry cough, lymphopenia, raised levels of lactate de-hydrogenase and, bilateral patchy shadows or ground glass opacity in the lungs (opacities may be mild damage of one lobe or all five lobes). This virus has the potential to affect pregnant women, however, its prevalence was not noticed in new-borns. Time to recovery is generally two weeks. To reduce the spread of COVID-19, observing hygienic practices like frequent hand washing, social distancing and drinking warm water and chloroquine phosphate are some of the measures to mitigate the effect of cronavirus. Copyright 2022 by the authors.

12.
Pakistan Journal of Zoology ; 54(4):1893, 2022.
Article in English | ProQuest Central | ID: covidwho-1837738

ABSTRACT

A novel coronavirus commonly known as COVID-19 has resulted in an ongoing outbreak of viral pneumonia. This pandemic started from Wuhan City, China and has spread throughout most parts of the world (210 countries). COVID-19 is a large sized, enveloped, positive stranded RNA virus. Out of the four known genera, alpha and beta corona viruses are the most commonly recognized viruses infecting human beings. COVID-19 is a new virus that is highly contagious. It spreads through infected persons in its prodromal stage which suggest its transmission is not likely through air. COVID-19 can affect people of all age groups and mostly results in the death of people with weak immune systems. Its most common reported symptoms are fever, fatigue, dry cough, lymphopenia, raised levels of lactate de-hydrogenase and, bilateral patchy shadows or ground glass opacity in the lungs (opacities may be mild damage of one lobe or all five lobes). This virus has the potential to affect pregnant women, however, its prevalence was not noticed in new-borns. Time to recovery is generally two weeks. To reduce the spread of COVID-19, observing hygienic practices like frequent hand washing, social distancing and drinking warm water and chloroquine phosphate are some of the measures to mitigate the effect of cronavirus.

13.
Revista Virtual De Quimica ; : 14, 2022.
Article in Portuguese | Web of Science | ID: covidwho-1772036

ABSTRACT

This article is a mirror of the initial clippings of a project junior scientific initiation project and aims to make available a scientific text, in Portuguese language, built in the light of the main highlights that brought the chloroquine and hydroxychloroquine into the spotlight of the current pandemic context. In view of this context, the objective of this article, of an eminently theoretical nature, is to contribute to the delimitation of fundamental concepts in the field of organic chemistry. The methodology adopted for this descriptive and exploratory research, with a qualitative approach, consisted of systematically reviewing the literature, using indexed databases, to contextualize factual points about the historical origin (natural and synthetic) and the pharmacological properties of heterocycles correlated to the theme of COVID-19 pandemic. We approach concepts and structural chemical formulas that support the area of organic chemistry and, more specifically, heterocyclic chemistry. And, through this compilation, we present a way of quick access to the recent information anchored in journals of national and international impact.

14.
J Pharmacol Toxicol Methods ; 108: 106949, 2021.
Article in English | MEDLINE | ID: covidwho-1045104

ABSTRACT

A vortex assisted spraying based fine droplet formation liquid phase microextraction (VA-SFDF-LPME) method was developed to determine chloroquine phosphate at trace levels in human serum, urine and saliva samples by gas chromatography-mass spectrometry (GC-MS) with single quadrupole mass analyzer. In the first part, several liquid phase microextraction (LPME) and magnetic solid phase extraction (MSPE) methods were compared to each other in order to observe their extraction ability for the analyte. VA-SFDF-LPME method was selected as an efficient and easy extraction method due to its higher extraction efficiency. Optimization studies were carried out for the parameters such as extraction solvent type, sodium hydroxide volume/concentration, sample volume, spraying number and mixing type/period. Tukey's method based on post hoc test was applied to all experimental data for the selection of optimum values. Optimum extraction parameters were found to be 12 mL initial sample volume, two sprays of dichloromethane, 0.75 mL of 60 g/kg sodium hydroxide and 15 s vortex. Under the optimum conditions, limit of detection and quantification (LOD and LOQ) were calculated as 2.8 and 9.2 µg/kg, respectively. Detection power of the GC-MS system was increased by approximately 317 folds with the developed extraction/preconcentration method. The applicability and accuracy of the proposed method was evaluated by spiking experiments and percent recovery results for human urine, serum and saliva samples were found in the range of 90.9% and 114.0% with low standard deviation values (1.9-9.4).


Subject(s)
Chloroquine , Liquid Phase Microextraction , Chloroquine/analogs & derivatives , Gas Chromatography-Mass Spectrometry , Humans , Limit of Detection , Saliva
15.
J Adv Pharm Technol Res ; 12(1): 57-60, 2021.
Article in English | MEDLINE | ID: covidwho-1044847

ABSTRACT

In the ongoing COVID-19 outbreak, a prophylactic drug is strongly needed to stop the spread of this disease. Chloroquine (CQ) has been proposed as a prophylactic for individuals who are likely to be exposed to the virus. This study aimed to study the ability of CQ to act as a prophylactic treatment for susceptible people. The pharmacokinetic profiles of in situ gel and free CQ phosphate were determined using high-performance liquid chromatography. The effects of both formulations were examined on both liver and kidney functions. CQ levels were sustained in the plasma of both free and in situ gel-treated groups. Thus, our study shows that the in situ gel of CQ provides sustained release of CQ that is given only as a single dose. However, it should be used cautiously in patients with liver or kidney dysfunction.

16.
J Pharm Biomed Anal ; 194: 113761, 2021 Feb 05.
Article in English | MEDLINE | ID: covidwho-919602

ABSTRACT

The proliferation of falsified medicines can cause serious public health issues, particularly in the context of a global pandemic such as the actual COVID-19 pandemic. Our study involved eight chloroquine phosphate medicines seized in Cameroon, Democratic Republic of Congo and Niger during March and May 2020. These suspect samples were first analyzed in a screening phase using field tools such as handheld Raman spectroscopy (TruScan) and then in a confirmation phase using laboratory tools such as hyperspectral Raman imaging and High Performance Liquid Chromatography (HPLC). The results confirmed the falsified nature of the samples, highlighting the presence of metronidazole at low dose in four samples (16.6, 15.2, 15.2 and 14.5 mg/tab), too low levels of chloroquine in two samples (2.4 and 20.2 mg/tab), and substitution of chloroquine phosphate by paracetamol in one sample (255.7 mg/tab). The results also confirmed that four samples had been adulterated with paracetamol in trace amounts and two of them presented traces of chloramphenicol.


Subject(s)
COVID-19/epidemiology , Chloroquine/analogs & derivatives , Counterfeit Drugs/analysis , Pandemics , Spectrum Analysis, Raman/methods , Anti-Inflammatory Agents, Non-Steroidal/analysis , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antimalarials/analysis , Antimalarials/therapeutic use , Chloroquine/analysis , Chloroquine/therapeutic use , Chromatography, High Pressure Liquid/methods , Counterfeit Drugs/therapeutic use , Humans , Tablets , COVID-19 Drug Treatment
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(4): 586-594, 2020 Apr 30.
Article in Chinese | MEDLINE | ID: covidwho-749256

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19) in the late 2019, a variety of antiviral drugs have been used in the first-line clinical trial. The Diagnostic and Treatment Protocol for COVID-19 (Trial Version 6) in China recommends chloroquine phosphate for the first time as an anti-coronavirus trial drug. As a classic drug for treatment of malaria and rheumatism, chloroquine phosphate has been used clinically for more than 80 years, and has also shown good results in the treatment of various viral infections. As the plasma drug concentration varies greatly among different races and individuals and due to its narrow treatment window, chloroquine in likely to accumulate in the body to cause toxicity. Among the treatment regimens recommended for COVID-19, reports concerning the safety of a short-term high-dose chloroquine regimen remain scarce. In this review, the authors summarize the current research findings of chloroquine phosphate in the treatment of COVID-19, and examine the pharmacokinetic characteristics, antiviral therapy, the therapeutic mechanism and safety of chloroquine.


Subject(s)
Betacoronavirus/drug effects , Chloroquine/analogs & derivatives , Coronavirus Infections , Pandemics , Pneumonia, Viral , Antiviral Agents , COVID-19 , China , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Humans , Pneumonia, Viral/drug therapy , SARS-CoV-2 , COVID-19 Drug Treatment
18.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 32(2): 119-122, 2020 Apr 22.
Article in Chinese | MEDLINE | ID: covidwho-418542

ABSTRACT

A novel coronavirus disease (COVID-19) was identified in Wuhan City, Hubei Province of China by the end of 2019, and then, the disease spread across China and became a global pandemic. Nevertheless, there are no effective treatments or vaccines for COVID-19 until now. In addition to the treatment of patients with COVID-19, the China Medical Treatment Expert Group for COVID-19 is active to study and screen effective antiviral drugs, and has found that chloroquine, an old antimalarial,shows activity against SARS-CoV-2. Then, chloroquine was included in the Guidelines for the Diagnosis and Treatment of COVID-19 in China (version 6) issued by National Health Commission of the People's Republic of China. Currently, chloroquine phosphate and hydroxychloroquine sulfate, two chloroquine derivatives, are under clinical use. Although these two agents exhibit similar mechanisms of drug actions, there is a difference between these two chemicals in terms of target populations, therapeutic efficacy and adverse reactions. This paper summarizes the currently available data and experiences from clinical treatment for malaria with chloroquine drugs, so as to provide insights into the more rational use of chloroquine agents for the treatment of COVID-19.


Subject(s)
Chloroquine/administration & dosage , Chloroquine/pharmacology , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Betacoronavirus/isolation & purification , COVID-19 , China , Chloroquine/adverse effects , Humans , Pandemics , SARS-CoV-2
19.
Discoveries (Craiova) ; 8(1): e105, 2020 Mar 12.
Article in English | MEDLINE | ID: covidwho-99528

ABSTRACT

Over 100,000 cases of COVID-19 patients infected with the novel coronavirus SARS-COV-2 have been reported worldwide in approximately 2 months, resulting in over 3000 deaths. Potential therapeutic strategies, including remdesivir, chloroquine phosphate, abidol, lopinavir/ritonavir, plasma, antibody, vaccine and stem cells are discussed in this review. With the number of patients increasing daily, there is an urgent need for effective therapeutic intervention.

20.
Acta Pharm Sin B ; 10(7): 1216-1227, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-88718

ABSTRACT

Chloroquine (CQ) phosphate has been suggested to be clinically effective in the treatment of coronavirus disease 2019 (COVID-19). To develop a physiologically-based pharmacokinetic (PBPK) model for predicting tissue distribution of CQ and apply it to optimize dosage regimens, a PBPK model, with parameterization of drug distribution extrapolated from animal data, was developed to predict human tissue distribution of CQ. The physiological characteristics of time-dependent accumulation was mimicked through an active transport mechanism. Several dosing regimens were proposed based on PBPK simulation combined with known clinical exposure-response relationships. The model was also validated by clinical data from Chinese patients with COVID-19. The novel PBPK model allows in-depth description of the pharmacokinetics of CQ in several key organs (lung, heart, liver, and kidney), and was applied to design dosing strategies in patients with acute COVID-19 (Day 1: 750 mg BID, Days 2-5: 500 mg BID, CQ phosphate), patients with moderate COVID-19 (Day 1: 750 mg and 500 mg, Days 2-3: 500 mg BID, Days 4-5: 250 mg BID, CQ phosphate), and other vulnerable populations (e.g., renal and hepatic impairment and elderly patients, Days 1-5: 250 mg BID, CQ phosphate). A PBPK model of CQ was successfully developed to optimize dosage regimens for patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL